The Future of Antipsychotic Therapy

(page 7 in syllabus)

Stephen M. Stahl, MD, PhD
Adjunct Professor, Department of Psychiatry
University of California, San Diego School of Medicine
Honorary Visiting Senior Fellow, Cambridge University, UK
Faculty Editor / Presenter

Stephen M. Stahl, MD, PhD, is an adjunct professor in the department of psychiatry at the University of California, San Diego School of Medicine, and an honorary visiting senior fellow at the University of Cambridge in the UK.

Grant/Research: AstraZeneca, BioMarin, Dainippon Sumitomo, Dey, Forest, Genomind, Lilly, Merck, Pamlab, Pfizer, PGxHealth/Trovis, Schering-Plough, Sepracor/Sunovion, Servier, Shire, Torrent

Consultant/Advisor: Advent, Alkermes, Arena, AstraZeneca, AVANIR, BioMarin, Biovail, Boehringer Ingelheim, Bristol-Myers Squibb, CeNeRx, Cypress, Dainippon Sumitomo, Dey, Forest, Genomind, Janssen, Jazz, Labopharm, Lilly, Lundbeck, Merck, Neuronetics, Novartis, Ono, Orexigen, Otsuka, Pamlab, Pfizer, PGxHealth/Trovis, Rexahn, Roche, Royalty, Schering-Plough, Servier, Shire, Solvay/Abbott, Sunovion/Sepracor, Valeant, VIVUS,

Speakers Bureau: Dainippon Sumitomo, Forest, Lilly, Merck, Pamlab, Pfizer, Sepracor/Sunovion, Servier, Wyeth
Learning Objectives

• Differentiate antipsychotic drugs from each other on the basis of their pharmacological mechanisms and their associated therapeutic and side effects

• Integrate novel treatment approaches into clinical practice according to best practices guidelines

• Identify novel therapeutic options currently being researched for the treatment of schizophrenia
Conventional (First-Generation) Antipsychotics

- D₂ antagonists
- Effective for positive symptoms
- Side effects
 - Extrapyramidal symptoms
 - Possible worsening of negative, cognitive, and affective symptoms

Chlorpromazine Perphenazine
Cyamemazine Pimozide
Flupenthixol Pipothiazine
Fluphenazine Sulpiride
Haloperidol Thioridazine
Loxapine Thiothixene
Mesoridazine Trifluoperazine
Molindone Zuclopenthixol

D₂ Receptor Occupancy Induced by Clinical Doses of Antipsychotic Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Doses in mg/d</th>
<th>EPS</th>
<th>No EPS</th>
<th>Parkinsonism</th>
<th>Akathisia</th>
<th>Parkinsonism</th>
<th>Akathisia, parkinsonism</th>
<th>Akathisia</th>
<th>Parkinsonism</th>
<th>Dystonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloperidol 6</td>
<td></td>
</tr>
<tr>
<td>Haloperidol 6</td>
<td></td>
</tr>
<tr>
<td>Haloperidol decanoate 50 / 28 d.</td>
<td></td>
</tr>
<tr>
<td>Haloperidol 6</td>
<td></td>
</tr>
<tr>
<td>Haloperidol 4</td>
<td></td>
</tr>
<tr>
<td>Haloperidol 12</td>
<td></td>
</tr>
<tr>
<td>Flupentixol decanoate 40 / 7 d.</td>
<td></td>
</tr>
<tr>
<td>Zuclopenthixol decanoate 200 / 24 d.</td>
<td></td>
</tr>
<tr>
<td>Thioridazine 400</td>
<td></td>
</tr>
<tr>
<td>Pimozide 8</td>
<td></td>
</tr>
<tr>
<td>Chlorpromazine 200</td>
<td></td>
</tr>
<tr>
<td>Sulpiride 800</td>
<td></td>
</tr>
<tr>
<td>Perphenazine enanthate 100 / 7 d.</td>
<td></td>
</tr>
<tr>
<td>Haloperidol 4</td>
<td></td>
</tr>
<tr>
<td>Trifluoperazine 10</td>
<td></td>
</tr>
<tr>
<td>Thioridazine 300</td>
<td></td>
</tr>
<tr>
<td>Haloperidol decanoate 70 / 28 d.</td>
<td></td>
</tr>
<tr>
<td>Remoxipride 400</td>
<td></td>
</tr>
<tr>
<td>Flupentixol 6</td>
<td></td>
</tr>
<tr>
<td>Melperone 250</td>
<td></td>
</tr>
<tr>
<td>Melperone 300</td>
<td></td>
</tr>
<tr>
<td>Flupentixol 6</td>
<td></td>
</tr>
</tbody>
</table>

D₂ receptor occupancy (%)

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Hypothetical Thresholds for Antipsychotic Drug Effects

- EPS threshold
- Antipsychotic effect threshold

Dose; plasma concentration

D2 receptor blockade (%)
Antipsychotics at High Doses

• Although standard doses of all antipsychotics target 60-80% occupancy of D₂ receptors, this may not be sufficient to quell psychotic symptoms in all patients.

• Pharmacodynamic treatment failure for aggression associated with psychotic illness occurs when patients do not respond despite attaining 80% D₂ receptor occupancy with standard doses of antipsychotics.

• In these cases, clozapine or high doses of antipsychotics targeting more than 80% D₂ occupancy may be justified, especially if effective in reducing assaults and if side effects are carefully monitored.
Atypical (Second-Generation) Antipsychotics

• Potentially effective for treating positive, negative, affective, and cognitive symptom domains due to vast molecular polypharmacy

• Side effects
 – Cardiometabolic
 – Sedation
 – Various others

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Common Classes of Atypical Antipsychotics

SDA
- asenapine
- iloperidone
- olanzapine
- paliperidone
- perospirone
- risperidone
- sertindole
- zotepine

SPA
- clozapine
- quetiapine
- ziprasidone

DPA
- amisulpride?
- low-dose sulpiride?
- cariprazine
- aripiprazole
Molecular Basis of Side Effects

Functional Groups Responsible for Therapeutic Effects

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Molecular Basis of Side Effects

Functional Groups Responsible for Side Effects

Cardiometabolic side effects, including weight gain, insulin resistance, and increased fasting triglycerides.

EPS

Tardive Dyskinesia

Increased Prolactin

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
The “-pines”: D2

![Graph showing receptor binding affinity of antipsychotic drugs with D2 receptors indicated.](image-url)
The “-pines”: 5HT2A
The “-pines”: 5HT1A, 2C, and 6
The “-pines”: 5HT7
The “-pines”: Alpha 1
The “-pines”: Alpha 2
The “-pines”: H1
The “-pines”: M1
The “-dones”: D2
The “-dones”: 5HT2A

Receptor Binding Affinity
Log of Ki values (nM)

- 5-HT2A
- D2
- risperidone
- paliperidone
- ziprasidone
- iloperidone
- lurasidone

Within 10 times Ki of D2

Low EPS
Low prolactin
The “-dones”: 5HT1A, 2C, and 6
The “-dones”: 5HT7
The “-dones”: Alpha 1

Receptor Binding Affinity
Log of Ki values (nM)

- 5-HT$_{2A}$
- α$_1$
- risperidone
- paliperidone
- ziprasidone
- iloperidone
- lurasidone

Within 10 times Ki of D$_2$
The “-dones”: Alpha 2
The “-dones”: H1
The “-dones”: M1

![Diagram showing receptor binding affinity with Ki values in nM](image)

- **Risperidone**
- **Paliperidone**
- **Ziprasidone**
- **Iloperidone**
- **Lurasidone**

Legend:
- **5-HT**
- **D2**
- **M1**

Note: The diagram illustrates the binding affinity within 10 times Ki of D2.
Aripiprazole: D2
Aripiprazole: 5HT2A
Aripiprazole: 5HT1A
Aripiprazole: 5HT7
Recently Approved Antipsychotic Treatments

ILOPERIDONE
ASENAPINE
LURASIDONE
Iloperidone

- Serotonin 5-HT$_{2A}$ / dopamine D$_2$ antagonist (SDA)
- Recently approved for acute treatment of schizophrenia in adults
Iloperidone

- Efficacy comparable to other AAPs
- Not approved for mania, but potentially effective
- Has very low placebo-level EPS and little or no akathisia
- Potent alpha 1 blocking properties suggest potential utility in PTSD
- Binding properties suggest theoretical efficacy in depression
- Long half-life suggests potential for once-daily dosing

- Limited registration data and real world clinical experience; follow slow titration
- Use caution with patients sensitive to orthostasis (young, elderly, patients with CV problems)
- In presence of potent 2D6 inhibitors (paroxetine, fluoxetine, duloxetine), reduce dose by half
- Weight gain/metabolic profile comparable to that of risperidone
- Dose-dependent QTc prolongation

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Asenapine

- Serotonin 5-HT$_{2A}$/dopamine D$_2$ antagonist (SDA)
- Currently approved for
 - Acute and maintenance treatment of schizophrenia in adults
 - Acute treatment of manic or mixed episodes associated with bipolar I disorder in adults
Asenapine

- Mild metabolic risk; no prolactin elevation
- No dose titration needed
- Long half-life; once-daily dose is theoretically possible
- Sublingual tablet good for reliable, compliant patient
- Not approved for depression, but binding profile suggests potential use in treatment-resistant cases

- Not absorbed once swallowed; must be administered sublingually
- Common side effect: oral hypoesthesia
- Patients may not eat or drink for 10 minutes after administration to increase bioavailability
- Somnolence/sedation, EPS
- Inhibits 2D6 and is a substrate for 1A2
Asenapine and Mirtazapine

- yellow = mirtazapine
- orange = asenapine

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Lurasidone

- Recently approved for schizophrenia in adults
- Lack of H_1 epitope suggests reduced risk of metabolic side effects and sedation
- 5-HT$_7$ antagonism may be beneficial for cognitive and negative symptoms
Lurasidone

- Lack of affinity at H₁ and M₁ receptors allows treatment to begin at therapeutically effective dose; rapid onset of action
- EPS and akathisia, but seems to be reduced if taken at night
- 40-80 mg/day effective for acute exacerbation of schizophrenia
- Will require confirmation from real world clinical experience
- Appears to have benign metabolic profile without affecting QTc prolongation; low EPS
- Once-daily administration is possible

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Tandospirone and Lurasidone
5-HT\textsubscript{7} Receptor Distribution in Rat Brain

- Involved in numerous processes, including learning and memory
- Many atypical antipsychotics and antidepressants act at 5-HT\textsubscript{7} receptors
- Receptor levels are decreased in post-mortem schizophrenia cortex

5-HT$_7$ Receptors

- Depressive symptoms
- Circadian dysfunction
- Cognitive deficits
Possible Effects of 5-HT\textsubscript{7} Receptor Antagonism

- Reduced Depressive symptoms?
- Reduced Circadian dysfunction?
- Reduced Cognitive deficits?
5-HT$_7$
5-HT$_7$

![Diagram](attachment:image.png)
5-HT₇
Weight Change From Double-Blind Baseline
Median Change From Double-Blind Baseline in Metabolic Parameters
High-Dose Lurasidone: PANSS Total Score

Based on a repeated measures linear regression model of the change from Baseline score, with fixed effects for pooled center, visit as a categorical variable, baseline score, treatment and treatment by visit interaction, assuming an unstructured covariance matrix.
High-Dose Lurasidone: MADRS

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline</th>
<th>Mean change in MADRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>11.8</td>
<td>-1.0</td>
</tr>
<tr>
<td>Lurasidone 80 mg/d</td>
<td>11.2</td>
<td>-4.0 ***</td>
</tr>
<tr>
<td>Lurasidone 160 mg/d</td>
<td>12.5</td>
<td>-4.4 ***</td>
</tr>
<tr>
<td>Quetiapine XR 600 mg/d</td>
<td>11.4</td>
<td>-4.3 ***</td>
</tr>
</tbody>
</table>

p < 0.001
High-Dose Lurasidone: Weight Increased by ≥ 7%
High-Dose Lurasidone: Cholesterol and Triglycerides

Cholesterol

- Placebo (n=111) -7.0
- Lurasidone 80 mg/d (n=111) -4.0
- Lurasidone 160 mg/d (n=114) -7.5
- Quetiapine XR 600 mg/d (n=107) +6.0

*** p<0.001

Triglycerides

- Placebo (n=111) -9.0
- Lurasidone 80 mg/d (n=111) -2.0
- Lurasidone 160 mg/d (n=114) -9.0
- Quetiapine XR 600 mg/d (n=106) +8.0

* p<0.05

Baseline: 132.3, 126.8, 127.5, 141.4
Emerging Antipsychotics and Novel Mechanisms of Action Under Investigation
Investigational Mechanisms and Agents for Schizophrenia

<table>
<thead>
<tr>
<th>Molecular Target</th>
<th>Clinical Target</th>
<th>Drug</th>
<th>Development Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine 2/serotonin 2A</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>sertindole</td>
<td>Phase IV</td>
</tr>
<tr>
<td>Dopamine 3 antagonism</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>cariprazine</td>
<td>Phase III</td>
</tr>
<tr>
<td>Glycine transport inhibition</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>RG1678 ORG25935 AMG 747</td>
<td>Phase III Phase II</td>
</tr>
<tr>
<td>Metabotropic 2/3 agonism</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>LY2140023 AZD8529</td>
<td>Phase II Phase II</td>
</tr>
<tr>
<td>Alpha 7 nicotinic agonism</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>RG3487 TC-5619</td>
<td>Phase II Phase II</td>
</tr>
<tr>
<td>Phosphodiesterase 10A enzyme</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>PF-02545920</td>
<td>Phase II</td>
</tr>
<tr>
<td>Cyclooxygenase-2 inhibition</td>
<td>Positive and negative symptoms (adjunct)</td>
<td>celecoxib</td>
<td>Phase II</td>
</tr>
<tr>
<td>Serotonin 6 antagonism</td>
<td>Cognitive symptoms (adjunct)</td>
<td>SB-742457 PF-05212365 AE58054</td>
<td>Phase II Phase II</td>
</tr>
<tr>
<td>Histamine 3 antagonism</td>
<td>Cognitive symptoms (adjunct)</td>
<td>PF-03654746 GSK239512</td>
<td>Phase II</td>
</tr>
<tr>
<td>Dopamine 2 partial agonism</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>bifeprunox</td>
<td>Ceased in Phase III</td>
</tr>
<tr>
<td>Serotonin 1A agonism</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>PF-217830</td>
<td>Ceased in Phase II</td>
</tr>
<tr>
<td>Serotonin 2C agonism</td>
<td>Positive, negative, and cognitive symptoms</td>
<td>vabicaserin</td>
<td>Ceased in Phase II</td>
</tr>
<tr>
<td>Positive allosteric modulation of glutamatergic AMPA receptors</td>
<td>Cognitive symptoms (adjunct)</td>
<td>farampator CX516</td>
<td>Ceased in Phase II</td>
</tr>
</tbody>
</table>

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Cariprazine

- In Phase III clinical trials for schizophrenia and bipolar disorder
- Stronger affinity for D₃ over D₂ receptors
- Higher doses for schizophrenia and mania (antagonist actions)
- Lower doses for depression (agonist actions)
- Few metabolic side effects identified thus far
- Long-lasting metabolites have potential for long-acting formulations
Modulation of Glutamatergic Transmission

- Direct-acting glycine agonists
- mGluR 2/3 presynaptic agonist
- GlyT1 inhibitors (GRIs)

To be covered in glutamate lecture
Phosphodiesterase 10A

- Phosphodiesterases (PDEs) degrade cAMP and cGMP
 - Involved in many second messenger systems
- PDE10A is concentrated in striatum
- PDE 10A inhibitors lead to
 - Increased D₁ receptor functioning
 - Decreased D₂ receptor functioning
- Effective for positive, negative, and cognitive symptoms?

PDE 10A Inhibitors

Improvement in negative and cognitive symptoms?

Reduced positive symptoms?
Nicotinic Alpha 7 Agonists

- Reduced levels of alpha 7 receptors in schizophrenia
- Patients with schizophrenia often have diminished auditory sensory gating
 - May contribute to attentional impairment and perceptual disturbances
- Autosomal dominant polymorphism of the alpha 7 gene on 15q14 linked to cognitive impairments in schizophrenia
- Alpha 7 agonists increase cortical DA and may improve cognitive and negative symptoms
Nicotinic Alpha 7 Agonists

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Summary

- Conventional antipsychotics exert therapeutic and adverse actions via dopamine D₂ receptor antagonism.
- Atypical antipsychotics exert their therapeutic and adverse effects by binding to a variety of receptors, including dopamine D₂.
- Asenapine, iloperidone, and lurasidone are the most recently approved antipsychotics.
- Several novel mechanisms of action that go beyond D₂ receptor antagonism are under active investigation.