A Horse of a Different Color: How Formulation Influences Medication Effects

(page 137 in syllabus)

Andrew J. Cutler, MD

Courtesy Assistant Professor, Department of Psychiatry
University of Florida
CEO and Medical Director, Florida Clinical Research Center, LLC

Sponsored by the Neuroscience Education Institute
Additionally sponsored by the American Society for the Advancement of Pharmacotherapy

This activity is supported solely by the sponsor, Neuroscience Education Institute.
Individual Disclosure Statement

Faculty Editor / Presenter

Andrew J. Cutler, MD, is a courtesy assistant professor in the department of psychiatry at the University of Florida in Gainesville, and the CEO and chief medical officer of Florida Clinical Research Center, LLC in Maitland.

Grant/Research: Alkermes, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Dainippon Sumitomo, Forest, GlaxoSmithKline, Janssen, Johnson & Johnson, Lilly, Lundbeck, Merck, Ortho-McNeil, Otsuka America, Quintiles Transnational, Roche, Shionogi, Shire, Sunovion, Supernus, Takeda, Targacept

Consultant/Advisor: AstraZeneca, Bristol-Myers Squibb, Cypress, Dainippon Sumitomo, Forest, Janssen, Labopharm, Lilly, Merck, Ortho-McNeil, Otsuka America, Pamlab, PharmaNeuroBoost N.V., Quintiles Transnational, Shionogi, Shire, Sunovion, Supernus, Takeda, Targacept

Speakers Bureau: AstraZeneca, Bristol-Myers Squibb, Dainippon Sumitomo, Forest, GlaxoSmithKline, Janssen, Labopharm, Lilly, Merck, Ortho-McNeil, Otsuka America, Pamlab, Shionogi, Shire, Sunovion
Learning Objectives

• Identify medications for which differences in formulation could influence therapeutic effects
• Differentiate the FDA definitions of bioequivalence and therapeutic equivalence
• Identify medications for which generic substitution is consistent with best practices
A patient with bipolar disorder and alcohol abuse is being prescribed a controlled-release medication with a narrow therapeutic index, and his clinician wants to select a formulation that minimizes the risk of dose dumping. Which of the following formulations might be the best choice?

1. Controlled-release single-unit hydrophilic matrix
2. Controlled-release single-unit hydrophobic matrix
3. Controlled release osmotic reservoir
How Formulation Influences Medication Effects: Pharmacokinetics

- Absorption
- Distribution
- Elimination

Onset of action
Consistency of plasma levels
Duration of action
Ability to cross blood-brain barrier
Parent drug/active metabolites

Ideal Drug Delivery

- **Plasma Concentration**
- **Time**
- **Toxic Level**
- **Desired Effect**

- **Start of Treatment**
- **End of Treatment**

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Formulation Effects on Plasma Concentration

Case in Point: Methylphenidate PK Patterns of Time-Release Beads vs OROS

Modified-Release Formulations
Modified-Release Formulations

- Deliver drugs in a controlled and predictable manner over time or in a predetermined position in GI tract
 - Delayed release
 - Extended release
 - Pulsatile release
 - Chrono-release
 - Targeted delivery
 - Combination of immediate, delayed, and/or extended

- Fundamental properties
 - Drug-release course
 - Dissolution profile
Modified-Release Formulations

• Mechanisms
 – Matrix vs reservoir
 – Single-unit vs multiparticulate

• Differentiating factors
 – Transit time in GI tract
 – Location of drug released
 – Dissolution of active molecule
 – Permeation through GI membrane
 – First-pass clearance
 – Intestinal degradation
Modified-Release Technologies: Matrix System

- Polymeric matrix
- Drug

Matrix swelling

Matrix degradation

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Modified-Release Technologies: Matrix System

• Hydrophilic
 – Most common, especially for poorly soluble drugs
 – Release can be affected by food/alcohol
 – Requires large amount of excipient, so dose loading is low

• Hydrophobic
 – For water-soluble drugs
 – Greater physical stability than hydrophilic
 – Tablet becomes inert in presence of water/GI fluid
Modified-Release Technologies: Reservoir System

coating

polymeric membrane

drug

inner core
Coating

- Differences in drug release depending on type of coating
 - Insoluble
 - pH dependent
 - Slowly erodible
Osmotic Controlled-Release Oral Delivery System (OROS)

- **coating**: drug, binders
- **semipermeable rigid membrane**
- **third compartment**: molecules that react with water
- **second compartment**: high concentration of drug
- **first compartment**: low concentration of drug
- **opening**

Stahl, Mignon. Stahl's Illustrated Attention Deficit Hyperactivity Disorder 2009. Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Modified-Release Technologies:
Single-Unit vs Multiparticulate Pellet Systems

- Advantages of multiparticulate
 - Less dependent on gastric emptying rate
 - Less subject variability in GI transit time/dietary state
 - Less local irritation
 - Less risk of dose dumping
 - More flexibility for complex release
Multiparticulate System: Multiple Bead System

gelatin capsule

two different types of beads (one delayed, one immediate)

drug

Stahl, Mignon. Stahl's Illustrated Attention Deficit Hyperactivity Disorder 2009.
Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Modified-Release Technologies: Effect of Food

- Single-unit affected more than multiparticulate
- Hydrophilic matrix affected more than other matrix systems
- Osmotic systems not heavily affected
Modified-Release Oral Formulations

Advantages
- Stable plasma concentrations
- Potentially fewer side effects
- Less frequent dosing/ better adherence

Disadvantages
- Cannot crush/chew
- Cannot mix with food (exception: beads)
- Potential for inter- and intraindividual variability
Oral Modified-Release Antidepressants

<table>
<thead>
<tr>
<th>Formulation*</th>
<th>Delivery</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>bupropion SR</td>
<td>Matrix tablet</td>
<td>Twice-daily dosing; reduces seizures compared to IR</td>
</tr>
<tr>
<td>bupropion XL</td>
<td>Reservoir tablet, diffusion through coating</td>
<td>Once-daily dosing; reduces seizures compared to IR; reduces risk of dose-dumping</td>
</tr>
<tr>
<td>bupropion hydrobromide ER</td>
<td>Film-coated tablet</td>
<td>Once-daily dosing; allows single administration of 450 mg equivalency to bupropion hydrochloride salt</td>
</tr>
<tr>
<td>desvenlafaxine ER</td>
<td>Matrix tablet; pH dependent</td>
<td>Once-daily dosing</td>
</tr>
<tr>
<td>fluoxetine weekly</td>
<td>Capsule with enteric-coated pellets; pH dependent (>5.5)</td>
<td>Once-weekly dosing; pellets dissolve after they reach portion of GI tract where pH exceeds 5.5</td>
</tr>
</tbody>
</table>

Generic formulations may use different delivery technologies.

Additional information was taken from drug inserts, company Web sites, and FDA Web site.
Oral Modified-Release Antidepressants

<table>
<thead>
<tr>
<th>Formulation*</th>
<th>Delivery</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluvoxamine CR</td>
<td>Multiparticulate SODAS capsule</td>
<td>May be better tolerated than IR, particularly with less sedation</td>
</tr>
<tr>
<td>paroxetine CR</td>
<td>Degradable matrix tablet; enteric film-coated</td>
<td>Delayed release until tablet has passed through stomach; 20% of drug remains in tablet</td>
</tr>
<tr>
<td>trazodone ER</td>
<td>Matrix tablet with membrane that gels in aqueous solution, protecting controlled release properties</td>
<td>Once-daily dosing; can maintain controlled release property if split; reduces risk of dose dumping</td>
</tr>
<tr>
<td>venlafaxine XR</td>
<td>Multiparticulate; diffusion through coating membrane on spheroids; not pH dependent</td>
<td>Once-daily dosing; reduces side effects compared to IR</td>
</tr>
</tbody>
</table>

*Generic formulations may use different delivery technologies.

Additional information was taken from drug inserts, company Web sites, and FDA Web site.
Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Oral Modified-Release Amphetamines

<table>
<thead>
<tr>
<th>Formulation/Delivery</th>
<th>Delivery</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained-release d-amphetamine</td>
<td>Spansule capsule</td>
<td>No lunch dosing; low risk for insomnia unless dosed at night</td>
</tr>
<tr>
<td>Extended-release d,l-amphetamine</td>
<td>Multiparticulate capsule containing coated beads, some IR and some delayed</td>
<td>Continued effects into early evening</td>
</tr>
</tbody>
</table>

Oral Modified-Release Methylphenidates

<table>
<thead>
<tr>
<th>Formulation/Delivery</th>
<th>Delivery</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained-release racemic</td>
<td>Wax matrix tablet</td>
<td>Lunch dosing may be needed; low risk for insomnia unless dosed at night</td>
</tr>
<tr>
<td>Time-release beads racemic</td>
<td>Multiparticulate capsule</td>
<td>Less risk for insomnia than OROS</td>
</tr>
<tr>
<td>SODAS microbeads racemic MPH-XR</td>
<td>Multiparticulate capsule; half of beads are IR, half are delayed release</td>
<td>Less risk for insomnia than OROS</td>
</tr>
<tr>
<td>OROS racemic</td>
<td>Osmotic reservoir</td>
<td>Continued effects into evening</td>
</tr>
<tr>
<td>SODAS microbeads d-methylphenidate XR</td>
<td>Multiparticulate capsule; half of beads are IR, half are delayed release</td>
<td>Once-daily dose in the morning</td>
</tr>
</tbody>
</table>

ORS = osmotic controlled-release oral delivery system
SODAS = spheroidal oral drug absorption system

Additional information was taken from drug inserts, drug company Web sites, and the FDA Web site.
Oral Modified-Release Psychotropics

<table>
<thead>
<tr>
<th>Formulation*</th>
<th>Delivery</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>alprazolam XR</td>
<td>Hydrophilic matrix tablet</td>
<td>Once-daily; can allow for more sustained effect with less breakthrough anxiety</td>
</tr>
<tr>
<td>carbamazepine ER</td>
<td>Osmotic reservoir tablet 3-bead capsule</td>
<td>Can reduce sedation and other side effects</td>
</tr>
<tr>
<td>divalproex ER</td>
<td>Matrix tablet</td>
<td>Once-daily; only 80% as bioavailable as IR, so dosed 8-20% higher</td>
</tr>
<tr>
<td>galantamine ER</td>
<td>Multiparticulate, reservoir capsule</td>
<td>Once-daily</td>
</tr>
<tr>
<td>guanfacine ER</td>
<td>Matrix tablet</td>
<td>Cannot be substituted on mg per mg basis with IR</td>
</tr>
</tbody>
</table>

Generic formulations may use different delivery technologies.

Additional information was taken from drug inserts, company Web sites, and FDA Web site.
Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Oral Modified-Release Psychotropics

<table>
<thead>
<tr>
<th>Formulation*</th>
<th>Delivery</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>lithium</td>
<td>Film-coated matrix tablet</td>
<td>May reduce gastric irritation, lower peak plasma levels, lower peak dose side effects</td>
</tr>
<tr>
<td>quetiapine XR</td>
<td>Film-coated matrix tablet</td>
<td>Once-daily</td>
</tr>
<tr>
<td>paliperidone ER</td>
<td>OROS reservoir tablet</td>
<td>Once-daily; there is no IR formulation</td>
</tr>
<tr>
<td>zolpidem CR</td>
<td>Matrix tablet</td>
<td>May be more effective for sleep maintenance than IR formulation</td>
</tr>
</tbody>
</table>

*Generic formulations may use different delivery technologies.

Additional information was taken from drug inserts, company Web sites, and FDA Web site.

Copyright © 2011 Neuroscience Education Institute. All rights reserved.
Transdermal Formulations: Patch

- Impermeable covering membrane
- Drug
- Adhesive
- Skin
- Capillary
Transdermal Formulations

Advantages
• Avoids first-pass metabolism (may reduce side effects, increase efficacy)
• Steady plasma concentrations
• Longer duration of action

Disadvantages
• Patches can be large/visible
• Local skin irritation/rash
• Patches may inadvertently come off
• Proper disposal

Psychotropics With Transdermal Patch Formulations

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>methylphenidate</td>
<td>10 mg/9 hr</td>
</tr>
<tr>
<td></td>
<td>15 mg/9 hr</td>
</tr>
<tr>
<td></td>
<td>20 mg/9 hr</td>
</tr>
<tr>
<td></td>
<td>30 mg/9 hr</td>
</tr>
<tr>
<td>rivastigmine</td>
<td>4.6 mg/24 hr</td>
</tr>
<tr>
<td></td>
<td>9.5 mg/24 hr</td>
</tr>
<tr>
<td>selegiline</td>
<td>6 mg/24 hr</td>
</tr>
<tr>
<td></td>
<td>9 mg/24 hr</td>
</tr>
<tr>
<td></td>
<td>12 mg/24 hr</td>
</tr>
</tbody>
</table>

Long-Acting Injectables

Advantages
- Longer duration of action
- Removes bioavailability problems related to absorption and first-pass metabolism
- Maintains stable plasma concentrations
- Decreased risk of overdose (suicidal patients)

Disadvantages
- Injection site reaction
- Risk of infection and hematoma
- Administration difficulties (obese or extremely thin)
- Lack of dosing flexibility
- Cost (for some)

Long-Acting Injectable Technologies

• Development of long-acting injectables
 – Protein engineering of native protein
 – Changes in primary structure
 – Formulations that modify circulating half-life
 – Formulation with excipients that delay uptake from injection site (depot formulations)

• Methods
 – Liposomes
 – Microspheres and nanoparticles
 – Polymeric Gels
 – Implants
 – Prodrugs
Psychotropics With Long-Acting Injectables

<table>
<thead>
<tr>
<th>Drug</th>
<th>Delivery</th>
<th>Duration</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>aripiprazole</td>
<td>Freeze-dried, water-based</td>
<td>4 weeks</td>
<td>In trials</td>
</tr>
<tr>
<td>fluphenazine</td>
<td>Decanoate salt, oil-based</td>
<td>Up to 4 weeks</td>
<td>Available</td>
</tr>
<tr>
<td>haloperidol</td>
<td>Decanoate salt, oil-based</td>
<td>4 weeks</td>
<td>Available</td>
</tr>
<tr>
<td>iloperidone</td>
<td>Biodegradable microspheres, water-based</td>
<td>4 weeks</td>
<td>In trials</td>
</tr>
<tr>
<td>olanzapine</td>
<td>Pamoate salt, water-based</td>
<td>2 weeks 4 weeks</td>
<td>Available</td>
</tr>
<tr>
<td>paliperidone</td>
<td>Palmitate, water-based</td>
<td>4 weeks 12 weeks</td>
<td>Available</td>
</tr>
<tr>
<td>risperidone</td>
<td>Biodegradable microspheres, water-based</td>
<td>2 weeks 4 weeks</td>
<td>In trials</td>
</tr>
</tbody>
</table>

D₂ Receptor Occupancy as a Function of Plasma Olanzapine Concentrations at 4 Weeks After Injection of 300 mg of Depot (N=14)

Mamo et al. 2008.
Mean D_2 Receptor Occupancy Over the 6-Month Study Period (N=14)

* Denotes plasma olanzapine concentrations; shows when injections were administered; n. number of PET scans

Mamo et al. 2008.
BPRS Total Mean Change Over Time

Mamo et al. 2008.
Proprietary and Generic Formulations

- Abbreviated protocol process for generics
- Can rely on efficacy and safety data of the original (proprietary) drug
- Required bioequivalence demonstration
- Allowed testing prior to brand patent expiration
- Handling of patent disputes and extensions
What Is A Generic Drug?

“A copy that is the same as a brand-name drug in dosage, safety, strength, how it is taken, quality, performance, and intended use.”

http://www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/UnderstandingGenericDrugs/default.htm
Proprietary vs Generic Medications: Criteria for Pharmaceutical Equivalence

Pharmaceutical Equivalence

Contain same active ingredient

Have same dosage form, route of administration, and strength/concentration
Pharmaceutical Alternatives

- Contain same therapeutic moiety
- But are different salts, esters, or complexes of that moiety
- Or are different dosage forms or strengths
 - e.g., tablets vs capsules
Proprietary vs Generic Medications: Criteria for Bioequivalence

Bioequivalence

Have comparable bioavailability* when administered in identical doses in an appropriately designed study.

*90% confidence intervals (CI) of the log-transformed ratios of the generic to the proprietary compound for area under the curve (AUC) and concentration peak (C_{max}) fall within 80% to 125%.
Bioavailability

The rate and extent to which the active ingredient or active moiety is absorbed from a drug product and becomes available at the site of action.
Proprietary vs Generic Medications: Criteria for Therapeutic Equivalence

Pharmaceutical Equivalence
- Contain same active ingredient
- Have same dosage form, route of administration, and strength/concentration

Bioequivalence
- Have comparable bioavailability* when administered in identical doses in an appropriately designed study

Therapeutic Equivalence

*90% confidence intervals (CI) of the log-transformed ratios of the generic to the proprietary compound for area under the curve (AUC) and concentration peak (C_{max}) fall within 80% to 125%.

US FDA. Approved Drug Products With Therapeutic Equivalence Evaluations 2011.
Proprietary vs Generic Medications: Allowed Differences

- Shape
- Scoring configuration
- Packaging
- Excipients
- Expiration time
- Labeling (within certain limits)
- Release mechanisms
Potential Limitations of the Current Requirements

- Studies conducted in healthy volunteers
- Measure parent drug and active metabolites, but not ratio
- Compare single-dose administration rather than therapeutic doses over time
- Dependence on single in vitro dissolution test to predict in vivo dissolution
- No statistical requirement for T_{max} or shape of plasma concentration-time curve
- Generics are bioequivalent to the proprietary drug, but are not tested against each other

Bioequivalence vs Therapeutic Equivalence

• For most medications, therapeutic equivalence can be assumed based on established bioequivalence

• For others, the allowed difference in extent and rate of absorption may combine with other differentiating factors to cause therapeutic variations
When Formulation May Matter for Proprietary vs Generic Medications

- Narrow therapeutic index
- Nonlinear pharmacokinetics
- Low water solubility
- Modified-release formulation
 - Change in multiphasic release?
 - Dose-dumping risk?
 - Agents with dose-related side effects
Example: Proprietary/Generic Citalopram IR and Proprietary/Alternative Venlafaxine XR

Celexa vs Gen-Citalopram (40 mg x 8 days)

Effexor XR vs Novo-Venlafaxine XR (75 mg x 5 days with washout)

No significant PK differences
No significant clinical differences

Significantly faster/greater release with Novo
Significantly more side effects

Open-label crossover study; N=12 healthy men for each

The Venlafaxine Extended-Release Saga

• Effexor XR capsules: chemical entity patent expired in 2008; XR capsule formulation patent good until 2017

• Osmotica’s ER tablets approved as a new drug (NDA), not a generic therapeutic equivalent

• Sun’s ER tablets ANDA requires bioequivalence to Osmotica’s (the RLD)

<table>
<thead>
<tr>
<th>Effexor XR capsule</th>
<th>Osmotica’s ER tablet</th>
<th>Sun’s ER tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiparticulate, drug diffuses through coating on spheroids</td>
<td>Single-unit, osmotic reservoir system</td>
<td>Single-unit, swellable matrix</td>
</tr>
</tbody>
</table>

Example: The Wellbutrin/Budeprion Controversy

• Jan 1 to June 30 2007: FDA received 85 post-marketing reports concerning adverse events in patients switched from Wellbutrin XL 300 mg to Budeprion XL 300 mg

• In 78 cases, there was a reported loss of antidepressant effect

• In some of those 78 cases and in an additional 7 cases, new onset or worsening of side effects was reported

• More than half of those who switched back to Wellbutrin XL 300 mg reported improvement of depression and/or abatement of side effects

• Given the temporal relationship, patients/physicians attributed these effects to the generic product

http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm153270.htm.
When Formulation May Matter: Bupropion

- We know it matters for bupropion IR vs SR vs XL
- The question is whether there is a meaningful difference between XL proprietary and generic

<table>
<thead>
<tr>
<th>Wellbutrin XL tablet</th>
<th>Budeprion XL tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-unit, reservoir system, diffusion through coating</td>
<td>Single-unit, matrix system</td>
</tr>
</tbody>
</table>
Wellbutrin XL vs Budeprion XL

Mean Plasma Concentration (ng/mL)

Time (hr)

Clinically relevant?

300 mg strength was not studied due to risk of seizures at higher doses

http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm153270.htm.
When Formulation May Matter: Bupropion

• FDA response: therapeutically equivalent
 – Small PK differences are within equivalence boundaries
 – Earlier T_{max} with generic is similar to Wellbutrin SR and slower than Wellbutrin IR
 – Recurrent nature of MDD offers a reasonable explanation for the reports of lack of efficacy following switch to generic
 – Asked Teva (mfr) to run head-to-head trial

• Potential dose dumping with generic formulation?

• May consider avoiding generic formulations for
 – Patients who drink alcohol
 – Patients who have the same risk factors for seizure as cited for bupropion IR
Improving FDA Criteria for Bioequivalence: Suggested Additional Measures

- Partial AUC at different times after dosing
- Comparison of shape of concentration-time profiles
- Consideration of subject-by-formulation interaction using replicated or enrichment study designs
- Examination of within-subject variation and lot-to-lot variability
- Clinical equivalence studies using biomarkers or surrogate endpoints
- Use of quality-by-design

Generic Substitutions: Physician and Patient Perceptions

- Aware that pharmacist may substitute without physician consent: 70% Physicians, 60% Patients
- Aware of mandatory generic substitution laws: 40% Physicians, 50% Patients
- Prefer generic if there are potential cost savings: 50% Physicians, 60% Patients
- Concerned about efficacy of generics for acute care
- Concerned about safety of generics for acute care

Questions were focused on anticonvulsants.

State Laws/Statutes Governing Generic Substitution

- Automatic generic substitution by pharmacist unless physician indicates “brand only”
- Legislated “brand only” for anticonvulsants
- Legislated that narrow therapeutic range drugs must be dispensed as prescribed
- Pharmacist’s decision to substitute if “brand only” not indicated by physician

When Formulation May Matter: Prescribing Decisions and Educating Patients

- Patients are less likely to fill prescriptions that are DAW, so make the request discriminately
- Probably not necessary for immediate-release drugs
- For controlled-release drugs, may depend on the release technology used for proprietary vs generic
- Might be most important for
 - Drugs with rapid onset of therapeutic/side effects
 - Drugs with rapid offset of therapeutic/side effects
 - Drugs with dose/plasma level-dependent side effects
 - Drugs with narrow therapeutic index
 - Patients who drink alcohol (important to determine amount/frequency)
- When prescribing DAW, explain to patients why it is important
When Formulation May Matter: Prescribing Decisions and Educating Patients

• When generic alternatives are reasonable
 – Explain this to patient
 – Advise patient to inform you/pharmacist if there is any change in symptoms or side effects following switch to generic
 – Advise patients to note the generic’s distributor and manufacturer and request the same generic each time