Targets of Psychopharmacological Drug Action

(page 33 in syllabus)

Stephen M. Stahl, MD, PhD

Adjunct Professor, Department of Psychiatry
University of California, San Diego School of Medicine
Honorary Visiting Senior Fellow, Cambridge University, UK
Individual Disclosure Statement

Faculty Editor / Presenter

Stephen M. Stahl, MD, PhD, is an adjunct professor in the department of psychiatry at the University of California, San Diego School of Medicine, and an honorary visiting senior fellow at the University of Cambridge in the UK.

Grant/Research: AstraZeneca, BioMarin, Dainippon Sumitomo, Dey, Forest, Genomind, Lilly, Merck, Pamlab, Pfizer, PGxHealth/Trovis, Schering-Plough, Sepracor/Sunovion, Servier, Shire, Torrent

Consultant/Advisor: Advent, Alkermes, Arena, AstraZeneca, AVANIR, BioMarin, Biovail, Boehringer Ingelheim, Bristol-Myers Squibb, CeNeRx, Cypress, Dainippon Sumitomo, Dey, Forest, Genomind, Janssen, Jazz, Labopharm, Lilly, Lundbeck, Merck, Neuronetics, Novartis, Ono, Orexigen, Otsuka, Pamlab, Pfizer, PGxHealth/Trovis, Rexahn, Roche, Royalty, Schering-Plough, Servier, Shire, Solvay/Abbott, Sunovion/Sepracor, Valeant, VIVUS,

Speakers Bureau: Dainippon Sumitomo, Forest, Lilly, Merck, Pamlab, Pfizer, Sepracor/Sunovion, Servier, Wyeth
Learning Objectives

• To explore transporters as drug targets
• To explore G protein-linked receptors as drug targets
• To explore ligand-gated ion channels as drug targets
• To explore voltage-sensitive ion channels as drug targets
Transporters and G Protein-Linked Receptors as Targets of Psychopharmacological Drug Action
Major Targets of Psychopharmacologic Drug Action

12 transmembrane region transporter
~ 30% of psychotropic drugs

7 transmembrane region G protein linked
~ 30% of psychotropic drugs
Other Targets of Psychopharmacologic Drug Action

4 transmembrane region
ligand-gated ion channel
~ 20% of psychotropic
 drugs

6 transmembrane region
voltage-gated ion channel
~ 10% of psychotropic
drugs

enzyme
~ 10% of psychotropic
drugs
Targets of Psychopharmacological Drug Action

- Transporters
- G protein-linked receptors
- Ligand-gated ion channels
- Voltage-sensitive ion channels
- Enzymes
Presynaptic transporters are a primary mode of inactivation for which of the following?

1. Monoamines
2. Amino acid neurotransmitters such as GABA and glutamate
3. Neuropeptides
4. 1 and 2
5. 1, 2, and 3
Pretest Question 2

The vesicular monoamine transporter 2 (VMAT2) is utilized by which neurotransmitter?

1. Serotonin
2. Norepinephrine
3. Dopamine
4. 2 and 3
5. 1, 2, and 3
Monoamine Transporters

presynaptic neurons

VMAT\textsubscript{2}

SERT

NET

DAT

5HT

NE

DA
serotonin (5HT)

vesicles

proton pump

VMAT 2

ATPase

Na⁺

Cl⁻

Na⁺

Cl⁻

K⁺

K⁺

add fluoxetine
fluoxetine (Prozac)
Acetylcholine and Choline Transporters

presynaptic neuron

VACHT

ACh

choline transporter

ACh

choline
GABA Transporters

presynaptic neuron

VIAAT

GAT-1

GABA

GAT-2

GAT-3

GAT-4

glial cell
Glutamate Transporters

presynaptic neuron

VGlut1

Glu

EAAT

postsynaptic neuron

EAAT

glial cell

EAAT

Glu

glutamine
Targets of Psychopharmacological Drug Action

- Transporters
- G protein-linked receptors
- Ligand-gated ion channels
- Voltage-sensitive ion channels
- Enzymes
Pretest Question 3

An antagonist is the opposite of an agonist.

1. True
2. False
The Agonist Spectrum

agonist

partial agonist

antagonist

inverse agonist
No Agonist: Constitutive Activity
Full Agonist: Maximum Signal Transduction
"Silent" Antagonist: Back to Baseline, Constitutive Activity Only, Same as No Agonist
Partial Agonist: Partially Enhanced Signal Transduction
Pretest Question 4

A partial agonist can be a net agonist when neurotransmission is deficient but a net antagonist when neurotransmission is excessive.

1. True
2. False
FULL AGONIST —
light is at its brightest

PARTIAL AGONIST —
light is dimmed but still shining

NO AGONIST —
light is off
Inverse Agonist: Beyond Antagonism; Even the Constitutive Activity Is Blocked
Agonist Spectrum

- Agonist
- Partial agonist
- No agonist or silent antagonist
- Inverse agonist
Ion Channels and Enzymes as Targets of Psychopharmacological Drug Action
Targets of Psychopharmacological Drug Action

- Transporters
- G protein-linked receptors
- Ligand-gated ion channels
- Voltage-sensitive ion channels
- Enzymes
The Agonist Spectrum

- Agonist
- Partial agonist
- Antagonist
- Inverse agonist
Pretest Question 5

A receptor will stop responding to an agonist:
1. When the agonist stops binding to it
2. When the receptor becomes desensitized
3. When the receptor becomes inactivated
4. 1 and 3
5. 1, 2, and 3
Channel in resting state
Channel open
Channel closed
Channel desensitized
Channel inactivated
Opening, Desensitizing, and Inactivating of Ligand-Gated Ion Channels by Agonists

- **Resting state**
- **Open state** activated by acute agonist
- **Desensitized state** activated by prolonged agonist
- **Inactivated state** not immediately reversed by removal of agonist

order of hours
GABA A receptors

resting

agonist

GABA

open

Cl

benzodiazepine

positive allosteric modulation

open further
Benzodiazepines: Indirect Effect on GABA Neurotransmission
Targets of Psychopharmacological Drug Action

- Transporters
- G protein-linked receptors
- Ligand-gated ion channels
- Voltage-sensitive ion channels
- Enzymes
Pretest Question 6

When voltage-sensitive sodium channels are open and activated, the flow of sodium is:

1. Into the neuron
2. Out of the neuron
The Pore of a Voltage-Sensitive Ion Channel Has 6 Transmembrane Regions

outside the cell

inside the cell
The Loop Between Regions 5 and 6 is an Ionic Filter

Voltage-sensitive sodium channel (VSSC)

outside the cell

inside the cell

Voltage-sensitive calcium channel (VSCC)

Na+

Ca++
Four Subunits Combine to Form the Alpha Pore Subunit, or Channel, for Sodium of a VSSC (Voltage-Sensitive Sodium Channel)

outside the cell

inside the cell

pore inactivation

Outside the cell

Na^+

pore inactivation

Inside the cell
Structure of Voltage-Sensitive Sodium Channels (VSSCs)
Pretest Question 7

Which of the following has evidence that it binds the alpha subunit of voltage-sensitive sodium channels?

1. Gabapentin
2. Pregabalin
3. Lamotrigine
4. 1 and 2
5. 1, 2, and 3
Possible Binding Sites for Certain Mood Stabilizers on VSSCs

- lamotrigine
- carbamazepine
- oxcarbazepine
Pretest Question 8

The alpha-2 delta subunit of voltage-sensitive calcium channels is believed to help regulate opening and closing of the voltage-sensitive calcium channel.

1. True
2. False
VSCCs (Voltage-Sensitive Calcium Channels) Have Multiple Associated Regulatory Proteins
Opening a Presynaptic Voltage-Sensitive N or P/Q Calcium Channel Triggers Neurotransmitter Release

![Diagram of neurotransmitter release](image)
Structure of Voltage-Sensitive Calcium Channels (VSCCs)
Site of Action of Alpha-2 Delta Ligands as Selective Inhibitors of Presynaptic Voltage-Sensitive N and P/Q Calcium Channels

\[\text{open} \quad \rightarrow \quad \text{closed} \]

= alpha-2 delta ligand
Molecular Action of Alpha-2 Delta Ligands
Pretest Question 9

Which of the following are involved in regulating neurotransmission via excitation-secretion coupling?

1. Voltage-sensitive sodium channels
2. Voltage-sensitive calcium channels
3. Both 1 and 2
4. Neither 1 nor 2
Nerve Impulse Propagation in Presynaptic Neuron: Serial Opening of VSSCs (Voltage-Sensitive Sodium Channels)

- reception
- integration
- chemical encoding
- electrical encoding
- signal propagation
- signal transduction
Presynaptic Release of Neurotransmitter by Excitation-Secretion Coupling: VSSCs, VSCCs, and Synaptic Vesicles

- reception
- integration
- chemical encoding
- electrical encoding
- signal propagation
- signal transduction
Synaptic Neurotransmission With Vesicular Release
Range of Synaptic Neurotransmission
Summary

- The major targets of psychopharmacologic drug action are transporters and G protein-linked receptors.

- Ion channels, both ligand gated and voltage sensitive, are also important targets of psychopharmacologic drug action.

- Enzymes also are the targets of some important psychopharmacological drugs.