
# Inflammatory Biomarkers and Treatment-Resistant Depression: A Targeted Review of Recent Clinical Evidence

Enque Endeshaw, MD [1]; Ishani Mehta, MD [2]; Amun Mustafa, MBBS [3]; Ashwin Mathai, MD [1]

- [1] Saint Elizabeths Hospital Department of Behavioral Health, Washington, DC, USA
- [2] Maharaja Agrasen Medical College, Agroha
- [3] Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, Pakistan.

#### Background

- TRD affects up to 1/3 of MDD patients.
- Evidence supports the role of chronic lowgrade inflammation in antidepressant nonresponse
- Peripheral biomarkers may guide precision psychiatry strategies.



#### Methods

- Targeted narrative review (PubMed, Google Scholar, 2020–2025).
- 16 clinical studies: RCTs, observational, and meta-analyses.
- Inclusion criteria were limited to human studies examining the relationship between peripheral biomarkers (e.g., CRP, cytokines, BDNF), treatment response, and inflammation-targeted interventions in TRD.

## Results

## Inflammatory Biomarkers and Antidepressant Response Patterns in MDD

| Biomarker        | Associated Inflammation Type    | Implication for Antidepressant Response     | Potential Adjunctive Treatment                                                   |
|------------------|---------------------------------|---------------------------------------------|----------------------------------------------------------------------------------|
| CRP (>3<br>mg/L) | Systemic low-grade inflammation | Poor response to SSRIs/SNRIs                | Dopaminergic agents (e.g., bupropion), anti-inflammatory strategies - Adalimumab |
| IL-6             | Pro-inflammatory cytokine       | Linked to chronic stress-related depression | IL-6 inhibitors, omega-3s                                                        |
| TNF-α            | Acute-phase cytokine            | Associated with treatment non-response      | TNF-α blockers (Adalimumab), lifestyle intervention                              |
| IFN-y            | Immune activation marker        | May correlate with melancholic features     | Limited evidence – under investigation                                           |
| IL-1β            | Neuroinflammatory cytokine      | May impair neurogenesis and affect mood     | Exercise, NSAIDs (selective use)                                                 |

#### **ADJUNCTIVE** PREDICTIVE INTERVENTIONS **MARKERS** CRP POOR SSRI/ IL-6 **KETAMINE RESPONSE** TNF-α MINOCYCLINE, CELECOXIB, WHOLE-BLOOD **ADALIMUMAB mRNA PROFILING SOME BENEFIT** (P2RX7, IL-1 $\beta$ , TNF- $\alpha$ , GR) SEX-SPECIFIC **IL-8 WITH KETAMINE** Kyn/tryptophan may predict ketamine response

- Predictive Markers
- ↑ CRP, IL-6, TNF- $\alpha$  poorer SSRI/ketamine response.
- •IL-8: sex-specific; ↑ after ketamine = improved response in females, worse in males.
- •Whole-blood mRNA profiling (P2RX7, IL-1 $\beta$ , TNF- $\alpha$ , GR) > conventional serum cytokines.
- •EEG vigilance predicts ketamine response.
- •Kynurenine/tryptophan ratio predicts ECT antianhedonic outcomes.
- Higher baseline BDNF may predict ECT response in TRD
- \* Adjunctive Interventions
- •Minocycline, celecoxib, adalimumab → potential benefit in subsets.
- •Metyrapone: may worsen depression, ↑ IL-6 (HPA axis activation).
- •Stratification by inflammatory status  $\rightarrow$  improved adjunctive response.

## Conclusion

- Inflammatory biomarkers may help predict TRD risk and inform adjunctive therapies.
- Novel approaches (mRNA expression, kynurenine pathway, EEG) may enhance stratification.
- However, studies so far show inconsistent results either due to smaller sample sizes or study design limitations.
- Next step: Large, standardized trials needed for biomarker-guided care.